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Abstract. The 21st Century has transformed the world of science by breaking the physical 

boundaries of distributed organizations and inter-connecting them into virtual science environ-

ments, allowing for systems and systems of systems to seamlessly access and share information 

and resources across highly geographically distributed areas.  This e-science transformation is 

enabling new scientific discoveries by allowing for greater collaboration as well as by enabling 

systems to combine and correlate disparate data sets. At the Jet Propulsion Laboratory in Pasa-

dena, California, we have been developing science data systems for highly distributed communi-

ties in physical and life sciences that require extensive sharing of distributed services and com-

mon information models based on common architectures.  The common architecture contributes 

a set of atomic functions, interfaces and information models that support sharing and distributed 

processing.  Additionally, the architecture provides a blueprint for a software product line known 

as the Object Oriented Data Technology (OODT) framework. OODT has enabled reuse of soft-

ware for science data generation, capture and management, and delivery across highly distributed 

organizations for planetary science, earth science and cancer research.  Our experience to date 

shows that a well-defined architecture and set of accompanied software vastly improves our abil-

ity to develop roadmaps for and to construct virtual science environments. 

Introduction 

The NASA Jet Propulsion Laboratory (JPL) has researched and built data inten-

sive systems for highly distributed scientific environments for many years [2, 4, 6, 

7, 10].  Due to the dynamic and changing mission environment for both solar sys-

tem and earth robotic exploration, a number of critical architectural principles 

have emerged, helping us to define an architecture that can evolve with explora-

tion and technological changes. Through our work at JPL, we have defined an ar-

chitectural style for data and computational grids that is focused on the capture, 
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processing, discovery, access, and transformation of digital data objects (and their 

rich metadata descriptions) across highly distributed environments. The frame-

work, called the Object Oriented Data Technology (OODT) framework [2, 10] 

was selected as runner up for NASA Software of the Year in 2003 and has been 

extensively used not only within physical science environments such as planetary 

[7, 8], earth [6, 11], and astrophysics [12], but also in biomedical research [4, 5].   

 

One of the central characteristics of the architecture is the application of architec-

tural patterns [13] consistently across very different science environments. OODT 

stresses up front the aspects of the architecture that are common, leaving the do-

main-specific aspects (where/how to reuse existing modular OODT components, 

and non-functional parameters of the architecture like scalability, efficiency, etc.) 

to be ironed out and iterated upon during system development. 

 

Over time, informed by our growing experience designing information systems to 

support scientific research, we observed common architectural patterns and ca-

nonical sets of services central to the successful development of systems within 

the different domains. The services include: 

 

• Data capture – dealing with metadata extraction, content analysis and 

detection (MIME-type and language detection) [15], along with validation against 

common metadata model e.g., ISO-11179 [16], and Dublin Core [17]. 

• Data discovery – dealing with the ability to describe resources (data, 

computation, identity, etc.) in a uniform fashion, and the methodologies for using 

those resource descriptions as a mechanism for discovery. 

• Data access – dealing with the acquisition of data from heterogeneous 

stores (RDBMS’es, filesystems, etc.) using a uniform access method.  

• Data processing – dealing with transformation (subsetting [18], interpo-

lation, aggregation, summarization, etc.) of data once it has been accessed. 

• Data distribution – The packaging of data and its metadata, and the plan 

for its eventual distribution to users downstream of the system. 

 

These services allow for distributed, independent deployment, yet maintain the 

ability to work in concert with one another when needed. Building systems in this 

fashion allows construction of large-scale, virtual information systems that span 

organizational boundaries.  

 

A second observation repeatedly impressed upon us through experience was the 

valuable contribution of a well-defined information architecture [1]. The informa-

tion architecture formally characterizes the data that is manipulated by the system, 

and is critical to realizing the domain implementation. As part of designing the in-

formation architecture for any domain, we have been actively involved in develop-

ing a standard information model for the representation of information associated 

with data objects managed within different scientific domains. The data objects 
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that are captured, managed and exchanged by the system are described in the in-

formation architecture by a “metadata object” which provides a set of attributes 

for the data object, and relationships between objects, as described in the domain 

information model.    

 

The OODT framework provides a set of core services and architectural patterns 

that simplify implementation of the above functions, which themselves are in-

formed by the domain model (e.g., a cancer biomarker information model, a 

planetary science information model, etc). The loose coupling between each serv-

ice and its associated domain model allows for the services to be easily developed 

to support multiple domains. Each of the OODT services can be deployed inde-

pendently and then can be integrated using XML-based interfaces over a distrib-

uted, grid architecture. This service independence and insulation makes it possible 

to minimize the effects of organizational boundaries on accessing data repositories 

(either local or distributed) concurrently, compiling the results into a unified view, 

and making them available for analysis. The OODT framework is based on the 

software architectural notion of components [13]. Each component has well 

known interfaces that enable them to be plugged together in a distributed, yet co-

ordinated, manner. The components themselves sit on top of off-the-shelf middle-

ware technologies so that they can be deployed easily into an enterprise topology. 

 

Each of our domain implementations is working to build domain-specific applica-

tions on top of the common services framework provided by OODT. For example, 

the NASA Planetary Data System (PDS) used a Lucene-based search engine [19] 

that integrated with OODT to provide millisecond-speed searching across highly 

distributed databases using a text-based search interface. The benefit of the frame-

work to these projects is that it has substantially helped in both building new data 

systems as well as integrating existing data systems, all while controlling software 

development costs through software reuse and standardized interfaces.   

 

In this chapter, we will discuss the architectural patterns and experience in imple-

menting an e-science [20] product line.  The chapter will highlight the technical, 

scientific, management and policy challenges associated with building and deploy-

ing multi-organizational data systems.  It will compare and contrast differences 

between planetary, earth and biomedical research environments and discuss the 

importance of a well-defined architecture and the need for domain information 

models. It will discuss key architectural principles in the design as well as the im-

portance of having a well-defined operational model to ensure both reliability of 

the system as well as quality of the data and services. 
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Applying e-Science Principles to Science 

In this section, we will motivate some of the critical architectural principles de-

rived from our experience in the e-science domain constructing systems with 

OODT. Each principle that we detail below is summarized for the reader’s con-

venience in Table 1. 

 

Collaboration is a critical aspect of scientific research.  Multi-center and multi-

institutional collaborations are often critical to support and validate scientific hy-

pothesis.  Yet, far too often, systems are not architected to support construction of 

virtual scientific environments, particularly in support of performing analysis of 

distributed data.  It is essential that the capture, management and distribution of 

scientific data resulting from scientific studies and research be considered in terms 

of its value to sharing data.  The access and correlation of data (P1) across dis-

tributed environments is critical to increasing the study power and validating the 

data from greater number of samples and contexts [5].  

 

What we have found from our technology development of virtual scientific net-

works is that location independence (P2) has become a critical architectural tenant 

for the construction of modern e-science data systems.  Location independence 

prescribes that the physical location of data and components should be transparent 

to those accessing them.  In other words, whether data and software are local or 

are geographically distributed should not matter to human or application users.  

The implication is that the access and interpretation of the data objects should re-

main consistent despite multiple topologies for the system that may be in place. 

 

Table 1. Architectural principles derived from our experience in the domain. 

Principle Description 

P1 Access and Correlation e-science software should providing uni-

form methods to bring together data in 

distributed environments to increase the 

chances of discovery.  

P2 Location independence Users of e-science software should not 

concern themselves with the physical lo-

cation of data or services. 

P3 Well defined information architecture Software changes rapidly in e-science 

systems. Data models and metadata at-

tributes do not. Systems that can easily 

support this evolution are desired. 
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As part of our work in the planetary science and cancer research communities 

(that we will elaborate on in Section 5 and again in Section 7 respectively) it has 

become apparent that a well-defined information model (P3) consisting of both 

rich data attributes implemented using well known standards (such as ISO-11179 

and Dublin Core) is also an important architectural principle. The planetary sci-

ence data model [7, 8] consists of a set of over 1200 data elements, including ter-

minology such as Target to identify the celestial body targeted by the mission’s 

instrument(s); Instrument to denote the name and type of the scientific instrument 

flown on the mission that records observations, and Mission to denote the unique 

name of the NASA mission for which data is being archived. One the cancer re-

search side, we have developed a group of over 40 data elements [4, 5], including 

Specimen Collected Code, an integer value denoting the type of specimen, e.g., 

blood sputum, etc., collected for a patient; Study Site Id which denotes a numeric 

identifier for a participate cancer research site; and Study Protocol Id, a numeric 

identifier denoting the protocol under which data has been collected, to name a 

few. 

 

Though technology changes rapidly, the above work on data models does not. In 

the case of the planetary model, changes have been limited over the past 20 years; 

an attribute was added here or there to account for some new mission, but those 

changes are few and far between – in all, 10s of the 1200 elements may have been 

modified, or added to. On the cancer research side, the same 40 data elements to 

describe cancer research data have been leveraged over the past eight years in the 

context of the National Cancer Institute’s (NCI) Early Detection Research Net-

work (EDRN) project, again, with similar experiences – some new instrument 

technology, or new application drives the creation of a few attributes here and 

there; nothing more. These examples illustrate the importance of a well-defined in-

formation model (P3) as a means of allowing software technology and data model-

ing to evolve independently of one another.  

 

In the next section we will describe our work on the Object Oriented Data Tech-

nology (OODT) framework, and its architecture, and demonstrate the relationship 

of the two to the aforementioned architecture principles summarized in Table 1. 

The Architectural Model and Framework 

"Expect the unexpected" has been the driving mantra behind OODT. Years of ex-

perience building implementations of this architecture for domains as diverse as 

planetary and earth science and cancer biomarker research have repeatedly im-

pressed upon us the need for a flexible, architecturally principled core platform of 

software and services upon which to build domain-specific extensions. Our ap-

proach has favored using a core set of loosely connected, independent components 



6  

[13] with well-defined interfaces over the more traditional monolithic system ar-

chitecture. A number of observations culled from our experience have helped to 

influence this design decision. We can directly map these observations to the three 

architectural principles (recall P1-P3 from Table 1) described earlier.  

 

The e-science domain [20] is focused on science, which in turn is focused on 

observation. Scientific instruments collect observations in the e-science world. For 

many decades, the resolution and frequency of the data returned from these in-

struments was minute, and disk space was expensive [21, 22]. In modern times, 

disk space is cheap, and instrument resolution and data capture ability is growing 

faster than the e-science systems that regularly must deal with the data. This situa-

tion has made it critical to develop e-science software based upon an overarching 

construct that was both open-ended and standards-based, to allow for necessary 

extension (principle P3 from Table 1). Furthermore, science is often subject to po-

litical considerations and policy factors that are subject to change.  This oft-

uncertain landscape amplifies the need for a system that can be quickly evolved to 

meet unexpected changes in the operational environment (principle P3 from Table 

1). 

 

 

Most data-intensive scientific information systems can be deconstructed into com-

binations of basic concepts of data capture, discovery, access, processing and dis-

tribution (recall Section 1) as demonstrated in Figure 1. The figure demonstrates 

the canonical science data pipeline in use by many e-science projects: in the upper 

left portion of the figure, a scientific instrument (in this case, represented by a re-

mote sensing instrument, but the same would apply to any type of observing sen-

sor, e.g., a microscope, etc.) records data, and then sends it over a network to a 

 
Figure 1. Common e-Science functions derived from architectural principles in Table 

1. The relationship between the functions is demonstrated as data flow beginning with 

data capture, culminating with data distribution. 
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data capture function. That data capture function then sends the recorded observa-

tions to a data processing function (either one time, or a series of times), which in 

turn may further process the provided data (and its descriptions, called metadata, 

or “data about data”), for example, if the data is an image, by down sampling the 

image, or resizing it. That processed data is then provided back to the data capture 

component, for persistence – the data is stored in a repository, and the metadata is 

stored in a registry. The data and metadata are then exposed downstream to users 

of the e-science system by a data discovery function (allowing search and discov-

ery against the registry), and by a data access function (allowing the physical bits 

captured in the repository to be accessed). The combination of the retrieved data 

and metadata is then provided to a data distribution function for ultimate distribu-

tion to the community (occurring in the bottom right portion of Figure 1).   

 

By modeling these core concepts as a collection of loosely connected components 

we have found that we can selectively utilize and re-arrange them to create a vari-

ety of scientific environments uniquely suited to the needs of specific projects, in-

dependent of the project domain. In other words, some projects will have a strong 

focus on e.g., data ingestion and data distribution, but not so much on that of data 

processing (planetary science is an example, as well as cancer research). However, 

on the other hand, other projects (and even science domains) will focus entirely on 

that of data ingestion, and data processing, omitting a strong focus on data distri-

bution, or on data discovery). With the base components in place, domain-specific 

intelligence can be layered on top to provide customization and tuning to the envi-

ronment (principles P1 and P3 from Table 1). 

 

Finally, the scope of the challenges being addressed across scientific disciplines 

today has driven a trend towards increased collaboration and partnership among 

researchers, often crossing organizational and institutional boundaries (principle 

P2 from Table 1). This new reality has placed a premium on the perception of lo-

cation-independence of data from the perspective of access and processing (prin-

ciple P2 from Table 1). As will be evident from the following sections, we have 

found that the federated component model provides a powerful mechanism for 

connecting distributed data holdings into virtual scientific environments in which 

the physical location of data is largely transparent to system users.   

 

Particularly for multi-institution implementations of large-scale data processing 

systems, the use of open, standards-based protocols for communication between 

distributed components of the system architecture is critical (principles P1, P2 and 

P3 from Table 1). Effective data capture, manipulation, storage, and dissemination 

are all predicated upon the existence of a shared protocol for communicating rep-

resentations of data between components. Our approach has favored open stan-

dards like XML-RPC [23], Resource Description Framework (RDF) [24], and 

Representational Entity State Transfer (REST) [25] to improve its integration po-

tential into as diverse an ecosystem as possible. 
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So far, we have restricted much of our focus to detailing the common software 

functions that are part of our reusable e-science architecture and framework. In the 

ensuing section, we will hone in on the information architecture, and discuss 

OODT’s focus on reusable models and patterns for representing data in an e-

science environment. 

An Information Centric Approach 

Data intensive systems in the e-science era must not only meet the expectations of 

a new generation of internet savvy scientists but as distributed scientific data re-

positories, they will also be expected to support science in ways not conceived of 

when the system were originally designed. To meet these expectations there must 

be an unambiguous specification of the data objects the systems manage and the 

context within which they exist in the targeted domain. These specifications must 

contain a broad range of modeling information, from classical data models that de-

fine the structure of the data objects to descriptions of the science context in which 

the data objects exists. In addition, to enable the potentials of the semantic web 

[26], the specification must also define a rich set of relationships between the data 

objects in the domain to allow machine reasoning. Finally to support system 

interoperability at the data level, shared models must be developed by science 

domain experts to provide a common domain of discourse for both scientists and 

machines.  

 

The information model is a key component of an e-science system. Lee [9] has de-

fined an information model as a representation of concepts, relationships, con-

straints, rules, and operations to specify data semantics for a chosen domain of 

discourse.  

 

In the Object Oriented Data Technology (OODT) reference architecture, and 

framework, an information model is thought of as a network of data models where 

each data model deals with one or more aspects of the system. For example, the 

Planetary Data System (PDS) information model has data models for each of the 

four fundamental data structures used to store digital objects, such as images of 

the planet Mars. Other data models exist for the science interpretation of the im-

ages, the time and geometry data needed to register the image on the planet’s sur-

face, and the descriptive information about the planets including identification at-

tributes and web-resource links for publications and authoritative information 

sources. Another data model prescribes a structure for packaging data objects into 

products that are registered, searched, located and retrieved. Finally the informa-

tion model as a whole puts the products into their science context by defining the 
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associations between products and adding taxonomical information such as assert-

ing that Mars is a Terrestrial planet in the solar system.   

 

Ontology modeling tools, used to model the domain, are leveraged often in 

OODT. The tools help to explicitly record each “thing” in the domain as a class. 

For example, data product, target, and investigation are all modeled as classes in 

the PDS ontology as shown in Figure 2. Figure 2 illustrates a few of the higher-

level classes and their relationships that have been defined in the PDS information 

model. More specific things such as “planet” exist as subclasses. A preliminary 

list of things to be modeled can often be identified in the functional requirements 

of an information system. The resulting information classes are then operated on 

by the system’s functions and services, aiding in addressing architectural principle 

P3 from Table 1. 

 

Functional requirements for the e-science domain typically include those men-

tioned earlier in Sections 1 and 3 (recall: data capture, processing, discovery, ac-

cess and distribution). These requirements suggest class attributes. For example 

basic management of an object, such as object capture, suggests the need for a 

unique immutable identifier, a title for display purposes, a version identifier, and 

some type of description. An object status attributes is suggested by life cycle 

management functions. 

 
Figure 2. Concept Map – PDS Classes and Relationships 
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The data processing requirement suggests the need for attributes that formally de-

fine the object’s data structure. For example, the fundamental structure used for a 

grayscale image, an array, must have attributes that provide the dimension of the 

array, the number of elements in each dimension, and the array element data type. 

 

The discovery and distribution functions both suggest a richer model, for example 

coordinate system attributes support common geographical information system 

queries on terrestrial planet surfaces. However finding features in Saturn’s rings or 

tracking a storm in Jupiter’s atmosphere requires dynamic metadata from complex 

calculations in addition to that metadata that is statically generated.  Finally cor-

relative information discovery and distribution requires shared models with com-

mon taxonomies and associations across classes to meet requirements.  

 

A vital concept within OODT and within the e-science domain as a whole is the 

information object [12]. Formally defined as the unique combination of a data ob-

ject (the bits) and its descriptive metadata (or its metadata object), the concept is 

used to uniformly describe, to allow for comparison, and to identify all things in 

the e-science domain into a core component for the model. For example, a Mars 

image is a digital instance of a data object, a sequence of bits. Metadata is associ-

ated with the data object to define its structure and describe the object so that it 

can be processed and made useful to scientists. In a similar manner, conceptual 

things like investigations and physical things like instruments are modeled as in-

formation objects as well. This concept is illustrated in Figure 3. 

 
Figure 3. UML class diagram of information object, adapted from [12]. 
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One of the canonical elements of an information model is its data dictionary. 

Whereas an ontology focuses on the definition of classes using attributes, a data 

dictionary focuses on the definition of the attributes. Intuitively a data dictionary 

defines an attribute as having a name, description, and a value. Our work within 

the context of e-science domains and OODT has led us to define attributes using a 

standard, more comprehensive data model. The model manages attributes sepa-

rately from an attribute’s permissible values and provides a range of specifications 

from effective dates, registration authority, submitter, steward, and classification 

schemes to the use of one or more natural languages for definitions. Data diction-

aries also provide a means of defining the language of discourse for the e-science 

domain, namely the terms used by the scientists and the system to communicate. 

The importance of a standard model for the data dictionary is especially evident 

when considering system interoperability at the data level.  System interoperabil-

ity is best built by laying a common foundation for communicating the most basic 

components in the system, the attributes used to define e-science domain termi-

nology.   

 

Based on our experience in the context of OODT, a shared ontology is the single 

most important element for enabling system interoperability and science data cor-

relation.  Uschold [14] states that the process of assembling a single shared ontol-

ogy automatically from separately developed ontologies is essentially cryptology. 

This is also true regarding the development of interoperable systems from dispa-

rate information models. The model driven aspect of the OODT infrastructure fo-

cuses on the use of an ontology to generate almost all of the design, implementa-

tion, and operational artifacts, all the way from the information model 

specification and data dictionary to registry configuration files and XML schema 

(recall, this is a core architectural principle, P3, allowing for the separation of data 

and software models, as described in Table 1). We have summarized the OODT 

model driven process in Figure 4. 

 

The system requirements and domain knowledge are captured in an ontology-

modeling tool and exports from the ontology database are translated to various no-

tations depending on the need (as shown in the upper left portion of Figure 4. For 

example, an XML Metadata Interchange (XMI) file is generated for import into 

UML modeling tools for the creation of UML class diagrams and potentially soft-

ware code. XML Schemas are generated for generating and validating XML 

documents used to capture metadata. RDFS/XML [24, 26] and OWL/XML [26] 

are supporting technologies used to implement search/browse functionality, and 

used traditionally in OODT based project implement capture, discovery, and dis-

tribution of information in the OODT system.   
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Armed with OODT’s reference architecture, its core functions and principles, and 

its information architecture focus, the following sections illustrate real OODT de-

ployments in the domains of planetary science, earth science and cancer research. 

Along the way we will tie back the domain requirements, functionality and ulti-

mate architectural and implementation principles discussed, illustrating OODT’s 

ability to effective model and implement software in the e-science domain. 

The Planetary Science Model 

The planetary science discipline has engendered scientific achievements that are 

poised to stand the test of time.  The robotic missions that have been flown to 

study the solar system represent some of mankind’s greatest engineering achieve-

ment. Yet, the design, launch and observations made by the spacecraft developed 

represent only part of the story.  Capturing, processing, sharing and analyzing the 

scientific results are critical stages in the overall mission necessary to increase the 

understanding of the universe in which we live.  The planetary science data sys-

 
Figure 4. The model driven process of the OODT architecture: separation of software 

and information model allows each to evolve independently. At the core of the process 

is the Ontology, used to codify the requirements, flow through functionality to the ac-

tual components, and ultimately validate the implementation of OODT architectures. 
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tems are invariably distributed and must be designed to support new science inves-

tigations with a variety of different types of data from images to complex data 

structures.  Yet, there is a critical need to ensure that these systems can be interop-

erable to allow for interdisciplinary research as well as research multiple missions 

and studies. 

 

In the early 1980s, the National Research Council formed the Committee on Data 

Management and Computation (CODMAC) [27].  CODOMAC focused on mak-

ing a number of recommendations on the long-term management of planetary sci-

ence data.  The NRC report identified seven core principles (1) Scientific in-

volvement; (2) Scientific oversight; (3) Data availability including usable formats, 

ancillary data, timely distributed, validated data, and documentation; (4) Proper 

facilities; (5) Structured, transportable, adequately documented software; (6) Data 

storage in permanent and retrievable form; and (7) Adequate data system funding. 

 

In the late 1980s, the United States National Aeronautics and Space Administra-

tion (NASA) formed a facility known as the Planetary Data System (PDS) [7, 8] 

that is responsible for curation and management of all scientific data results from 

robotic exploration of the solar system.  The structure of the PDS is based on the 

CODMAC report organized to provide scientific expertise on the use of the disci-

pline-specific scientific data sets by the worldwide scientific community. Over the 

years, the PDS has become a national resource, housing well over 100 terabytes of 

data across eight nodes covering NASA missions starting in the 1960s.  These 

nodes cover scientific discipline areas including planetary atmospheres, geo-

sciences, imaging, magnetospheres, radio science, planetary rings, and small bod-

ies.  A node covering overall engineering of the system is based at the Jet Propul-

sion Laboratory. The overall structure of the PDS is depicted graphically in Figure 

5. 
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PDS has been a leader in defining data standards, working with missions and in-

strument teams, and developing data system technologies. It has also been instru-

mental in changing the scientific culture by working with the planetary science 

community to publicly release and peer review the data it captures. It is often cited 

as a model by other domestic and international science data systems doing lead-

ing-edge scientific research [7, 8]. 

 

PDS has made several critical “architectural” [7, 8] decisions that have been 

paramount to its success. In the spirit of the OODT architectural principles (recall 

principle P3 from Table 1) PDS has defined a Planetary Science Data Model that 

all missions conform to when submitting data to the PDS. Having a common data 

model allows for searching across nodes, missions, instruments and products in a 

uniform manner which is important for turning the PDS federation into an inte-

grated enterprise, as well as addressing a core e-science function of data discovery 

(recall Section 3). While many disciplines are addressing semantic interoperability 

after data has been archived, PDS is working, as early as possible, with the mis-

sions so they adopt the PDS data standards and use common terms for document-

ing science data. PDS’s common data model, having transcended several technol-

ogy upgrades and changes to the system, has remained critical to the entire project 

since its inception (in line with principle P3 from Table 1). 

 

PDS continues to evolve towards a broader vision of an online, distributed system 

based on international standards. The focus of PDS, over the next five years, is to 

enable the PDS to move towards a fully online, distributed system that supports 

the evolving needs of both PDS data providers and users while improving the 

overall efficiency and reliability of the system. A further objective of PDS is to 

continue to architect tools that can be deployed in a variety of heterogeneous 

 
Figure 5. The geographic distribution of NASA's Planetary Data System. There are 

nine nodes geographically distributed across the U.S., broken down by scientific ex-

pertise. 
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computing environments to allow for specific adaptation and use within different 

mission contexts as early as possible in the life of a mission, helping to address 

principles P1 and P2 from Table 1, and ultimately to realize the necessary e-

science services such as data access, discovery and distribution as shown in Figure 

1. 

 

The PDS itself is a classic virtual organization where the organization represents a 

number of distributed elements, principally people, data and systems. The purpose 

is to build a homogeneous federation of archives to promote greater interoperabil-

ity and construction of the virtual science environment for planetary research. This 

leads to common governance challenges whereby policies for local versus federal 

control and standards must be well defined.  The PDS allows a substantial amount 

of autonomy at each of the nodes, but requires that all data that is produced and 

captured within the PDS be compliant to a common set of data standards (address-

ing principle P3 from Table 1).  This common model has helped to improve the 

ability to access and integrate data that is physically distributed across the PDS 

network.  As PDS has evolved is technical implementation over the years, there 

has been continued migration towards create a single, virtual system, where dis-

covery and access to the data is transparent to the user. In other words, the physi-

cal topology of the system becomes less important as the maturity of the system 

and movement towards virtualization continues (in line with principle P2 from 

Table 1). This is illustrated in many ways by the recent work (2006 and beyond) 

helping to form the International Planetary Data Alliance (IPDA) [37].  The IPDA 

is an international standard organization, focused on the development of interna-

tional standards for the purposes of enabling interoperability and data sharing of 

planetary science data archives across space agencies.  In large part, many of the 

early work on IDPA has focused on implementing a common set of functions, de-

fining the necessary information architecture, and realizing an implementation 

driven by the e-science aspects of OODT employed by PDS discusses thus far in 

this section. Beyond the location independence (principle P2 from Table 1), nec-

essary access (principle P1 from Table 1) required for federating PDS within the 

U.S., moving to an international virtual organization has only strengthened our be-

lief in the small set of core principles upon which e-science systems can be based. 

 

Besides the service-focused principles, even more so in PDS the information ar-

chitecture (principle P3 from Table 1) emerges as a critical component of the sys-

tem. PDS’s information architecture largely employs the use of data dictionaries, 

core data elements, domain models, and other information-centric principles (re-

call Section 4) necessary in the e-science domain. Specifically, for our work on 

PDS and in planetary science as a whole, we have constructed an ontology that 

describes the planetary objects and their relationships within the domain.  The on-

tology model allows capture of rich semantics within the model and mechanisms 

to export the model into both schemas and standard documentation for use by data 

producers within a mission (recall Figure 4). The model contains the core ele-
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ments of planetary science (missions, targets, spacecraft, data, etc) and is extended 

to engender domain-specific data services (subsetting, coordination transforma-

tion, mining, etc) beyond those core e-science services (recall Section 3) common 

to many e-science systems. Data that is captured and sent to the PDS is validated 

against the model to ensure semantic and syntactic compliance.  The purpose is to 

build a homogeneous federation of archives. 

 

Figure 6 shows the common information flow for data, whereby data providers 

(missions, instrument teams and individual principal investigators) submit data to 

the PDS that is stored within the distributed system, and then distributed to the 

data consumers. 

 

In summary, the planetary science community is benefiting from the e-science 

paradigm change through the ability to access, search, download and use scientific 

data results from missions.  Without a well-defined data and software architecture, 

this would not be possible.  The core data standards developed for the NASA 

Planetary Data System, for example, have been essential for representing metadata 

and data in a common way and ensuring that it can be located across highly dis-

tributed repositories and then loaded into common tools.   The existence of such 

standards has helped to pave the way towards greater interoperability at an inter-

national scale. 

Earth Science Research 

Earth Science is another domain that has complex data sets that are captured 

across a variety of distributed data systems.  These systems capture and process 

observational data acquired from satellites as well as other measurement instru-

ments in a variety of data formats using different information models. In addition 

to capturing observational data, a significant amount of work occurs in the devel-

opment of complex scientific models to analyze such challenges as climate change 

and weather prediction.   As the computing capabilities have increased, there has 

been significant interest in sharing data across various communities and data sys-

tems.  One such example is in the area of climate change to compare climate mod-

els to satellite observations. 

 

 
Figure 6. Information flow within the Planetary Data System (PDS). 
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Over the course of next few years, the Intergovernmental Panel on Climate 

Change (IPCC), the leading international organization studying global climate 

change, will undergo a battery of experiments whose results will be recorded in 

the 5th Assessment Report, or AR5 [28]. The experiments are geared towards 

simulating dozens of climate related variables, from air pressure, to sea surface sa-

linity, all the way to the world’s temperature, which has been a huge subject of 

debate and interest (inter-)nationally, and of which major U.S. and global funding 

initiatives have arisen from.  

 

The UN Climate Change conference in Copenhagen meetings held during Decem-

ber 2009, which included participation from some of the most influential members 

of our global society, including U.S. President Barack Obama, highlighted the im-

portance of the upcoming IPCC AR5 activity. Decades-long climate model simu-

lations over multiple variables and parameters require massive amounts of data 

and computation in order to provide meaningful results in a timely fashion. Fur-

ther, these simulations require complex climate models, which themselves require 

tuning and observation by hundreds of scientists looking to identify the next im-

portant prediction that can be used to inform national policy and decision making 

based on the Earth’s climate. 

 

A recent IEEE workshop1 brought together IT professionals and climate research-

ers with the goal of understanding how information technology, grid computing, 

data science and computer science could be brought to bear to help climate scien-

tists participating in AR5. One of the principal conclusions of this workshop (as 

well as that of a meeting2 that preceded it) was identifying the role of technology 

in the AR5 was helping to shepherd in observational data as a means of climate 

model improvement and diagnostics. As it turns out, though the prior IPCC model 

runs (AR4) was deemed widely seminal, and produced over 2000 peer-reviewed 

science publications, the organizers of AR5 believe that the reliability of projec-

tions (and also the number of publications resultant from this activity) could be 

improved if the models were validated and measured against remotely sensed ob-

servations. 

 

Within the last year, the Climate Data eXchange (CDX), an effort to improve use 

of NASA’s earth observational data in the improvement and analysis of climate 

model outputs, was initiated under the supervision of NASA’s JPL [29]. The ma-

jor focus of CDX is directly enabling the aforementioned IPCC activity, and to 

provide NASA observational data products (both raw level 2 in the long-term and 

level 3 in the short-term) to the IPCC AR5 community. The data products vary 

broadly in their formats (e.g., HDF vs. netCDF), geographic coverage, access 

                                                             
1 http://smc-it.org/workshops/crichton.html  

2 http://www.ipcc.ch/workshops-experts-meetings-ar5-scoping.htm  
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methods, and volume. Additionally, the science and observations within the data 

files are highly instrument specific, including temporal and spatial properties that 

must be harmonized in order for model comparison.  

 

The crux of the problem is that global climate models provide measurements of 

parameters in all places at all times for which the model is run; observational data, 

on the other hand, does not. In turn, the CDX project’s focus is that of obviating 

these heterogeneities and providing an open source software toolkit for use in the 

IPCC AR5, and to help its science users rapidly and programmatically improve 

and validate climate models.  

 

A large effort has been made to deploy web-services and a client toolkit based on 

OODT [10]. Much of the focus on leveraging OODT for CDX to date has been to 

expose data access, discovery and processing (subsetting) services (recall Figure 1 

and see Figure 7) provided by NASA’s mission science computing facilities, spe-

cifically the Atmospheric Infrared Sounder (AIRS), the Microwave Limb Sounder 

(MLS), CloudSAT, and the Multi-angle Imaging SpectroRadiometer (MISR). 

OODT is focused on providing the substrate for unlocking data, metadata and 

computations; the orchestration of those operations is provided by the CDX client 

toolkit as shown in Figure 7. 

 

your.user.machine

CDX Client Toolkit (cdxget, cdxls)

CDX Gridded Time Series 
(sciencecode)

AIRS machine

CDX Gateway (Web Grid)

CDX Product Server

OFSN Handler
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2. CDX Gridded Time Series invokes the CDX Client Toolkit Component

3. CDX Client Toolkit leverages its Product Server Client component to 

invoke (via HTTP/REST connector) the query interface exported by the 

CDX Product Server located at a particular URL. The invocation includes 2 

parameters: OFSN, a virtual path to a file/directory, and RT type, a 

transformation to perform on the resource identified by the OFSN. For 

cdxls, that transformation is DIRLIST, which requests a directory listing at 

the provided OFSN.

4. The CDX Product Server (a component within the CDX Gateway server 

component) receives the invocation for its query interface and in turn 

invokes its OFSN query handler, passing it the invocation parameters.

5. The OFSN Handler looks up the OFSN path on the AIRS filesystem, and 

performs the requested action (RT type, which is DIRLIST). 

6. The OFSN handler gets the listing back, and packages it up into an XML 

response message to be sent back to the Product Server Client on 
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7. The received dir listing XML is received by the Product Server Client and 

the CDX Client Toolkit takes this XML and sends it to the File Listing 
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Series component for use in further processing

1

Joe the 

Scientist

2

3

OFSN,RT type

data response

(if listing, then 

XML, if get 

command, then 

data file)

file listings, or file 

bits

4

56

6
7

8

XML file listing

CDX file listing 

string

 
Figure 7. The Anatomy of a CDX operation. The client toolkit provides underlying 

data access services to the example application (CDX Gridded Time Series) by re-

motely contacting the CDX gateway service on the airscdx machine. 
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The interactions illustrated in Figure 7 demonstrate the manner in which CDX and 

the principles of OODT are changing the regular day-to-day activities of a climate 

researcher. We will use a use case scenario to demonstrate. In our scenario, the 

climate researcher desires to build a time series comparison of a particular meas-

urement (we will select water vapor for the purposes of discussion; many other 

measurements could be used) available from the AIRS data system. To begin, the 

researcher would select a series of observations for a time range, and then, for 

each day in that time range, download (recall data access from Section 3) around 

240 Hierarchical Data Format (HDF) version 4 files [30] to her local drive, the 

sum of which would be used for a ground truth comparison against simulated 

NCAR Community Climate System Model (CCSM) version 3 data containing 

measurement predictions, e.g., for water vapor. The model data, however, are 

stored in a separate archive, and in a different data format, NetCDF [31]. Once the 

data is downloaded (again, recall data access from Section 3, and Figure 1), both 

sets (the HDF and netCDF) of data are loaded via an OPeNDAP interface [32] 

(recall principle P3 from Table 1) into a few Python scripts, responsible for: (1) 

averaging the observational data and ensuring it is on the same space/time contin-

uum; (2) computing a statistic, e.g., an average or a covariance needed to assess 

the observational data against its predicted values from the model (recall, data 

processing, and data access from Section 3 from Section 3, and Figure 1).  

 

As shown in Figure 7, the CDX approach for addressing this use-case scenario in-

volves pushing as much of the computation as close to the data as possible, insu-

lating location of data and transference of service to the OODT middleware layer 

(steps 3, 4, 5 and 6 from Figure 7) as possible, and ensuring the time series com-

ponent is unaware of the actual remote data access and computation that is occur-

ring (principles P1 and P2 from Table 1). The transformation of the water vapor 

observational measurements is removed from the actual Python program, and 

pushed to the remote OODT product service, co-located with the AIRS data as 

shown in the upper right portion of Figure 7), addressing data processing, and so-

lidifying its interface with data access, as demonstrated in Section 3 and Figure 1. 

 

To date, we have leveraged the CDX infrastructure and client toolkit to directly 

enable two critical use cases for climate change. The first example involves deliv-

ering NASA observational data to the Earth System Grid gateway at Lawrence 

Livermore National Laboratory (LLNL) with the direct intention of sharing the 

observational data for AR5 – to date, AIRS level 3 data, as well as MLS level 3 

data has been delivered to the Earth System Grid, with the information being pro-

vided by the underlying CDX infrastructure. The second major use case involves 

performing model to observational data time series comparisons between AIRS 

level 3 data, and NCAR CCSM model output, available from LLNL, as described 

above.  
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Our experience has shown that a well-defined architecture and a set of common 

standards and software components are useful for deploying and building e-

science architectures.  Given the maturity of our work with the OODT software 

framework and the development of common information and software architec-

tures, the Climate Data Exchange came together very quickly.  While the common 

problems of heterogonous data systems existed, the experience and technologies 

available allowed us to deploy an infrastructure that could access climate observa-

tions and models, and bring them together into an environment that allowed for 

greater scientific discovery opportunities. 

 

Cancer Research 

The capture and sharing of scientific data to support advances in biomedical re-

search is another domain that is benefiting from the e-science paradigm. As we 

have seen above in the planetary and Earth science disciplines, cancer research has 

experienced an explosive growth over the past decade in the amount of raw data 

produced by observational instruments. Furthermore, the inherent complexity of 

the challenges facing cancer researchers today has made the cooperative collabo-

ration among geographically distributed researchers an attractive approach. As a 

direct result, the development and utilization of informatics tools capable of sup-

porting these new “virtual organizations” has taken on a new importance in this 

domain as well – and so has the notion of e-science systems as the majority of this 

chapter has focused on. 

 

In 2000, the Early Detection Research Network (EDRN) was formed as a collabo-

rative research organization funded and led by the Cancer Biomarkers Research 

Group of the U.S. National Cancer Institute [4]. The EDRN consists of scientists 

from more than 40 institutions around the United States who are focused on the 

discovery and validation of biomarkers for the early detection of cancer [4, 5].  

The EDRN program has required an informatics infrastructure that is tightly inte-

grated with its scientific program and supports the capture and sharing of bio-

marker data results. 

 

 

As with other scientific domains, cancer biomarker research today involves the 

collection and processing of significant quantities of data (recall Figure 1 from 

Section 3), as well as the assimilation of diverse information from many disparate 

sources for investigation and analysis (dealing with architectural principles P1-P3 

from Table 1). What often distinguishes research in cancer biomarkers, however, 

is the heterogeneity of the information that its researchers must interact with (re-

lated to architectural principle P3 from Table 1). Everything from clinical studies, 
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peer-reviewed publications, statistical data sets, imagery, and human and animal 

tissue samples can contribute something of value to the overall research picture. 

With so much technological progress having been made in recent years, however, 

investigators are increasingly finding themselves awash in data and faced with in-

creasingly acute pressure to efficiently extract the signal from the noise. As a re-

sult, tools for managing and understanding this data have become critical to pro-

viding researchers with the ability to efficiently and reliably obtain, process, 

preserve, and publish research results.  

 

Specimen tracking and query systems, relational models for biomarker data, litera-

ture search engines, and data warehousing technology for long-term secure storage 

and statistical analysis are concepts whose implementations have been around in 

one form or another for several years. The pressing challenge today is in the inte-

gration these tools and the data they contain into a seamlessly connected, multi-

institution research platform to support the increasingly collaborative efforts of 

modern research scientists (dealing with location transparency as highlighted in 

architectural principle P2 from Table 1). 

 

The EDRN is an excellent example of an e-science virtual organization. Its re-

search is a coordinated effort by many distributed participants to join forces in at-

tacking the complex and multi-faceted problem of early detection of cancer. The 

viability of the EDRN model, where distributed participants collaborate and share 

data seamlessly, is predicated on the existence of a technology infrastructure ca-

pable of supporting domain-specific distributed research efforts. Such infrastruc-

tures are an example of science and technology working hand-in-hand to achieve 

results that would have been impossible to attain using a traditional, monolithic 

approach. E-science virtual organizations promote collaboration, and EDRN is no 

different. It was conceived with the understanding that none of its members had 

the requisite human, material, or financial resources to take on the challenge of 

finding new biological indicators for the early detection of cancer alone. Collabo-

ration, however, provides an avenue for subdividing the problem, and targeting the 

resources and expertise of each individual institution for maximum effect (archi-

tectural principles P1 and P2 from Table 1). 

 

Recognizing this, the EDRN has consistently placed a strong emphasis on the role 

of technology in helping to alleviate the technical, scientific, management, and 

policy challenges associated with conducting large-scale distributed scientific re-

search. The development of an informatics infrastructure to promote the coordina-

tion of efforts and the sharing of research results has been a cornerstone of the or-

ganization’s success. 

 

Since the EDRN’s inception, JPL has played a central role in the development of 

an enterprise-wide informatics infrastructure for the EDRN, focused on a number 

of concrete goals, and designed to provide a sturdy technological platform for the 
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EDRN’s distributed research efforts. Leveraging lessons learned from several of 

the planetary and earth science data systems discussed earlier, and taking into ac-

count the unique needs of researchers in the cancer biomarker domain, JPL lever-

aged the OODT software product line to develop a distributed research grid of 

tools and services that collectively came to be known as the EDRN Knowledge 

Environment, or EKE.  

 

Utilizing OODT provided us with a strong base anchored in the principles of dis-

tributed information representation and sharing. The layered services approach 

used in the planetary and Earth domains was again leveraged here to develop do-

main specific extensions to the core services as well as data-type specific tools for 

high-fidelity data analysis and interpretation (similar to the example in Section 5 

from planetary where planetary specific data services were developed on top of 

those discussed in Section 3 and in Figure 1). 

 

The domain information model for EKE consisted of two key components:  a se-

mantic ontology, which described classes of information objects in the domain and 

explicitly mapped their relationships to one another; and a “data dictionary” con-

sisting of terms whose definition had been agreed upon and that could be counted 

upon to have a shared interpretation across institutional boundaries (architectural 

principle P3 from Table 1). 

 

Each component of EKE was designed to be in conformance with the EDRN do-

main information model. The fact that OODT was architected with an “Expect the 

Unexpected” mantra (as described in Section 3) was particularly valuable to us in 

this implementation as the domain information model expanded and evolved many 

times in a variety of directions that would have been very difficult to predict a pri-

ori.  

 

Similar to planetary science, having a well-defined domain information model to 

guide development of the EKE infrastructure and tools was absolutely critical (as 

noted in architectural principle P3 from Table 1). Due to the open-ended design of 

the underlying OODT architecture, the natural evolution of the domain model did 

not pose a threat to the integrity of the infrastructure. On the contrary, the presence 

of a guiding model, even one in occasional flux, proved crucial to rationalizing 

implementation decisions in the context of the domain, and maintaining sanity in 

the face of integrating technologically and geographically diverse systems into a 

unified virtual scientific environment.   

 

The EDRN Knowledge Environment was built around the now familiar principle 

of loosely connected components capable of communicating among one another 

by virtue of a shared information model. Rather than a traditional, monolithic 

stack of applications and services tied to a particular technology set physically in-

stalled into a single centralized location, this architecture permitted the develop-
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ment of an ecosystem of applications and service endpoints that were physically 

located near the data they manipulated, and yet transparently accessible from 

anywhere via the grid, dealing with architectural principles P1 and P2 from Table 

1. 

 

Although several of the component applications of OODT have been introduced 

earlier in the chapter (recall section 3), a few merit more detailed discussion in the 

context of their ability to break down institutional barriers to data discovery and 

sharing and truly enable distributed scientific research.  

 

The EDRN Resource Network Exchange, or ERNE, was one of the EDRN’s early 

success stories. Designed as a distributed specimen query system, ERNE lever-

aged OODT’s product and profile server architecture to provide unified query ac-

cess to the numerous specimen repositories located at EDRN member sites (see 

Figure 8 for a detailed view of this architecture). Prior to ERNE, a centralized 

query mechanism for specimens did not exist and there was no way for a re-

searcher to reliably know with any certainty that he or she had a comprehensive 

understanding of specimen availability, short of actually contacting each site indi-

vidually to inquire.  

 

With the help of the Common Data Elements from the domain information model, 

it was possible to determine a set of data attributes that would be able to ade-

quately describe specimen resources. However, because the specimen repository 

information systems at each of the sites were technologically heterogeneous, que-

rying all of them in a unified manner meant the need for site-specific translations 

or mappings between the ERNE query based on EDRN CDEs and the site-specific 

naming conventions in place at each repository. 

 

By placing OODT product server software at each site and working with sites to 

develop the requisite mapping, it was possible to develop ERNE in a way that al-

lowed for unified query access to the distributed specimen repositories without 

perturbing the host site’s internal data model or operating procedures. As a result, 

ERNE queries run from the web-based query interface return a unified picture of 

the matching specimen resources available at each of the participating EDRN 

sites. As of this writing, ERNE had connected specimen resources at thirteen dif-

ferent sites around the US, totaling over a quarter million specimens.  

 

The type of location-independent access (recall architectural principle P2 from 

Table 1) to data embodied by ERNE has been one of the overarching tenants of 

the EDRN’s informatics infrastructure. Another way that EKE provides research-

ers with a truly virtual scientific environment is by seamlessly integrating with ex-

ternal (non-EDRN) data sources. The EDRN, while ambitious, is relatively small, 

and relatively young compared with similar organizations worldwide. EDRN rec-

ognized early on that collaboration, not only among its member sites, but also be-



24  

tween itself and the myriad other international efforts at combating cancer through 

research, would be highly valuable to its research community. With that in mind, 

the EDRN has developed its Biomarker Database application [33] to flexibly inte-

grate links to resources and content physically housed and cataloged in reposito-

ries external to the EDRN itself.  

 

The Biomarker Database is an attempt to provide researchers with a unified pic-

ture of the state-of-the-art for research on particular biomarkers. This curated re-

source provides access to annotated information from a wide variety of sources 

some within and some external to the EDRN itself. Because of the flexibility of 

the EDRN domain information model, and the architecturally supported abstrac-

tion of the physical location of data from an to end user perspective, the EDRN 

Biomarker Database has attracted attention for its ability to quickly provide re-

searchers with context about ongoing and past research efforts related to a particu-

lar biomarker.  

 

In the course of carrying out its research, the EDRN generates a considerable 

amount of data. Some of this data is “raw”, and some has undergone various proc-

essing steps to transform it into an informational resource. While sharing informa-

tion is central to EDRN’s mission, it also aims to preserve its research assets, 

thereby organizing them into a long-term, national resource that can be leveraged 

to aid future research efforts.  

 

 
Figure 8. The EDRN Resource Network Exchange (ERNE) deployment for EDRN. In 

the diagram, OODT services (product servers and profile servers) implement the func-

tions of data discovery, access, and distribution. 
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The EDRN Catalog and Archive Service, or eCAS, provides a data warehousing 

capability that is central to providing long-term, secure storage of research 

datasets. The system enables data generated from across the EDRN enterprise to 

be added to the archive, while associated meta-data is extracted, reviewed for 

quality, and indexed to provide a semantically rich catalog of the information as-

sets stored in the repository.  

 

The EDRN’s data holdings are numerous, varied, and highly distributed as shown 

in Figure 9. The EDRN recognized that providing centralized access to the accu-

mulated knowledge would be key to promoting its efforts and increasing the value 

of the research results by facilitating the degree to which they could be discovered, 

understood, and utilized. JPL developed a dynamic portal interface to provide ac-

cess to resources from across the EDRN enterprise from a single, centralized web 

interface. Because the EKE components and services each adhere to the EDRN 

domain information model (architectural principle P3 from Table 1), the relation-

ships between EDRN data are consistent and predictable. Furthermore, EKE has 

centered on the use of Resource Description Format (RDF) [24] to provide text-

based semantic representations of the data that can be passed between applications 

as necessary. By analyzing and aggregating RDF streams from each of the EKE 

components, the EDRN Public Portal is able to consistently provide up-to-date, 

richly annotated information that communicates the full extent of the resources 

available through the EDRN. 

 
Figure 9. The geographic distribution of the Early Detection Research Network and 

the variety of data managed in the e-science enterprise. The distributed data in the 

system is linked together via a semantic portal (in the center of the diagram, unifying 

the view of research and progress within the EDRN. 
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The EDRN Knowledge Environment provides a virtual scientific environment, a 

technology platform which supports the EDRN’s core efforts to collect, organize, 

process, and share the vast amounts of critical research it conducts on a daily ba-

sis. The informatics infrastructure forms a comprehensive, architecturally princi-

pled, and pragmatic approach to supporting cancer biomarker research through 

tools and interfaces, which, though each may be distributed, are linked to one an-

other through a common information model, and capable of bi-directional com-

munication via the grid. JPL has leveraged the e-science reference architecture 

promoted via OODT, deconstructing the process of biomarker research into a set 

of functions, and providing a layered system with applications on top of a core set 

of services to enable the logical integration of EDRN data. Furthermore, by inte-

grating these domain-specific applications into an enterprise system, the informat-

ics infrastructure enables EDRN as a national organization to provide the capabil-

ity for managing the biomarker information assets at a national level. 

 

The Early Detection Research Network (EDRN) is an excellent example of an e-

science infrastructure for cancer research.   The EDRN has been an important 

pathfinder to pioneer the use of informatics to deploy a distributed, model-driven 

architecture across geographically distributed cancer research laboratories.  Our 

experience within EDRN confirmed our belief that a well-defined information 

model is critical to linking distributed, heterogeneous data systems together.  The 

early work of developing a common information model that could be embedded 

within a distributed software service framework such as OODT, quickly trans-

formed the EDRN from a set of independent research laboratories into an inte-

grated knowledge system where various data such as scientific datasets, biospeci-

mens, study information, etc could all be accessed and shared.   Efforts to build 

and identify system architecture helped to provide a scalable and extensible archi-

tecture that has allowed for new services to be added As a result, the EDRN has 

become a recognized e-science model for the cancer biomarker research commu-

nity [4, 5].  

Related Work 

A considerable amount of work has been done in advancing the principles of e-

science and applying them to the construction of systems across the full spectrum 

of scientific research. The fact that these principles are so broadly applicable 

speaks to the power of the approach. The contributions to the field are too numer-

ous to cover in detail here, but we present a selection of e-science efforts that spe-

cifically relate to the development of virtual scientific environments for carrying 

out distributed research.  
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De Roure et al [34] have addressed the issues related to applying a semantic layer 

to the traditional e-science grid concepts in an effort to add increased richness to 

the communication options available to e-scientists. De Roure shares in the vision 

of an infrastructure that achieves its goals through pragmatic decomposition of the 

problem into modular components that share a common communication method-

ology. In particular, he promulgates a scenario involving a service oriented ap-

proach to building the e-science infrastructure, laying out in great detail both the 

advantages and the research challenges inherent to this approach. Emphasizing the 

importance of the “knowledge layer” in the construction of e-science infrastruc-

tures, De Roure further provides a roadmap of sorts, in the form of categorized re-

search challenges, for moving from the present state of the art to a more compre-

hensive, semantically rich e-science environment.  

 

Hey and Trefethen [35] describe large-scale efforts in the UK at building an e-

Science infrastructure, including an e-science grid testbed, to support research in 

multiple scientific domains. Motivated in part by the increasingly data-intensive 

work being carried out in European research facilities like the Large Hadron Col-

lider (LHC), which is expected to generate on the order of petabytes of data annu-

ally, the program aims to leverage the power of the grid to support the access and 

analysis needs of scientists the world over. Hey references NASA’s Information 

Power Grid (IPG) project as an “existence proof”, and outlines the technical de-

tails of the UK’s plan along with short- and long-term challenges, strongly empha-

sizing the need for international collaboration to ensure that the value of the effort 

is not constrained. 

 

 Yang et al [36] provide a brief examination of e-science infrastructure interoper-

ability, taking a key concept that initially fueled the rise of grid-based e-science 

systems and applying it to those systems themselves. Yang concludes that while 

the systems surveyed have each made significant strides in connecting their re-

spective research cohorts, the middleware upon which these systems are built are 

for the most part not yet interoperable with one another. Yang argues that integrat-

ing these e-science initiatives will become increasingly important and should be 

the next step in the evolution of increasingly interconnected global scientific re-

search.  

Conclusion 

The e-science paradigm is only increasing.  The infrastructures that are being built 

around the world are changing the way in which science is performed.  No longer 

is science constrained by the boundaries of a local laboratory. It is being con-

ducted across geographical, organizational and political boundaries allowing for 

world-wide collaboration among scientific researchers. As a result a focused soft-
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ware architecture approach is critical to supporting the ambitious goals of building 

virtual science environments, by integrating distributed organizations. 

 

In this chapter, we have described an architectural approach, a set of principles, an 

information model and associated implementation framework that bridges the gap, 

allowing reuse of software and information architecture across scientific domains. 

Specifically, we have described the OODT architecture and implementation, used 

to build widely successful e-science applications in the areas of planetary science, 

earth science, and cancer research. We have addressed issues of data cap-

ture/curation, processing, dissemination and preservation in each of these hetero-

geneous application domains using OODT as the linchpin upon which domain-

specific information models and software are constructed. 

 

While our work to date has been highly successful, a number of pertinent research 

questions remain. Our current work is focused on the areas of analysis of distrib-

uted data sets, large-scale, wide-area data movement, and in the areas of cloud 

computing, each which we believe fit within the architectural paradigms of e-

science systems. We expect the focus on information and software architecture, 

OODT’s principle foundations, to aid our efforts and help make a strong contribu-

tion to each of these emerging areas. 
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